LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – NOVEMBER 2015

SECTION - A

ST 1820 - ADVANCED DISTRIBUTION THEORY

Date : 03/11/2015 Time : 01:00-04:00

UCEAT LUX VES

Dept. No.

Max.: 100 Marks

(10 x 2 = 20 marks)

Answer ALL questions. Each carries TWO marks.

- 1. Prove that X, the number of heads obtained when a coin is tossed twice, is a random variable.
- 2. Give the definition of distribution function and mention its properties.
- 3. If X has the distribution function

$$F(x) = \begin{cases} 0, & x < 0\\ \frac{(x+1)}{2}, & 0 \le x < 1\\ 1, & 1 & x < \cdots \end{cases}$$

then prove that X is neither discrete nor continuous random variable.

- 4. Obtain the pdf and mgf of truncated binomial, left truncated at '0'.
- 5. Show that the geometric distribution has lack of memory property.
- 6. Suppose that $X_1, X_2, ..., X_n$ are iid non-negative and integer valued random variables. Prove that X_1 is geometric when $X_{(1)} = Min\{X_1, X_2, ..., X_n\}$ is geometric.
- 7. Obtain the pgf and mgf of power-series distribution.
- 8. Obtain the marginal distributions of X_1 and X_2 , when $(X_1, X_2) \sim BB$ (n, p_1, p_2, p_{12}) .
- 9. Prove that bivariate Poisson distribution has additive property.
- 10. Write the compound distribution of X, when (i) θ is discrete, (ii) θ is continuous.

SECTION - B

Answer any FIVE questions. Each carries EIGHT marks.

 $(5 \times 8 = 40 \text{ marks})$

11. If the distribution function F(x) = $\begin{cases} 0, & x < 2\\ \left(\frac{2}{3}\right)x - 1, & 2 & x < 3\\ 1, & 3 & x < c \end{cases}$

then obtain the (i) decomposition of F, (ii) mgf of F.

- 12. For a truncated Poisson distribution, left truncated at '0', obtain the mean, variance and mgf.
- 13. Characterize Poisson distribution through pdf.
- 14. If X₁, X₂ are iid Poisson random variables with parameter λ , then prove that X₁ | X₁ + X₂ = n follows B(n, $\frac{1}{2}$).
- 15. Check whether or not the binomial, Poisson and log-series distributions are power-series distributions.
- 16. State and establish Skitovitch theorem regarding normal distributions.
- 17. If X₁, X₂, X₃ are independent normal variables with $E(X_1) = 1$, $E(X_2) = 3$, $E(X_3) = 2$ and $V(X_1) = 2$, $V(X_2) = 2$ and $V(X_3) = 3$, then check whether or not the following pairs are

1

independent:

(i) $X_1 + X_2$ and $X_1 - X_2$ (ii) $X_1 + X_2 - 2X_3$ and $X_1 - X_2$

(iii) $2X_1 + X_3$ and $X_2 - X_3$.

18. Derive the mgf of inverse Gaussian distribution.

SECTION - C

Answer any TWO questions. Each carries TWENTY marks. 19(a) For a power-series distribution, obtain the first cumulant k_1 and the recurrence formula for obtaining r^{th} cumulant k_r . Therefore find k_r for Poisson distribution. (10)(b) Let $(X_1, X_2) \sim BB(n, p_1, p_2, p_{12})$. Prove that $X_1 | X_2 = x_2 d U_1 + V_1$, where $U_1 \sim B (n - x_2, \frac{p_1}{q + p_1}), V_1 \sim B(x_2, \frac{p_{12}}{p_2 + p_{12}}) \text{ and } U_1 \text{ is independent of } V_1.$ (10)20(a) Obtain the relation among mean, median, and mode of a log-normal distribution. (10)(b) If $X_1 \sim G(\alpha, p_1)$, $X_2 \sim G(\alpha, p_2)$ and X_1 is independent of X_2 , then prove the following: (i) $X_1 + X_2 \sim G(\alpha, p_1 + p_2)$, (ii) $X_1/(X_1 + X_2) \sim$ Beta distribution of first kind, (iii) $(X_1 + X_2)$ is independent of $(X_1 / (X_1 + X_2))$. (10)21(a) Prove that $((X - \mu)^2)/(\mu^2 X) \sim \chi^2(1)$, when $X \sim IG(\mu, \lambda)$. (b) Obtain the conditional distribution of (i) $X_2 | X_1 = x_1$, (ii) $X_1 | X_2 = x_2$, when (8) $(X_1, X_2) \sim BVN(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho).$ (12)

22(a) Obtain the mgf of
$$(X_1, X_2)$$
 at (t_1, t_2) , when $(X_1, X_2) \sim BVN (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. (10)

(b) Give the definition of non-central t – distribution. Hence obtain its pdf. (10)

 $(2 \times 20 = 40 \text{ marks})$