LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2015

ST 1820-ADVANCED DISTRIBUTION THEORY

Date: 03/11/2015
Time : 01:00-04:00 \square Max. : 100 Marks

SECTION - A

Answer ALL questions. Each carries TWO marks.
($10 \times 2=20$ marks)

1. Prove that X, the number of heads obtained when a coin is tossed twice, is a random variable.
2. Give the definition of distribution function and mention its properties.
3. If X has the distribution function

$$
\mathrm{F}(\mathrm{x})=\left\{\begin{array}{cc}
0, & x<0 \\
\frac{(x+1)}{2}, & 0 \leq x<1 \\
1, & 1 \leq x<\infty
\end{array}\right.
$$

then prove that X is neither discrete nor continuous random variable.
4. Obtain the pdf and mgf of truncated binomial, left truncated at ' 0 '.
5. Show that the geometric distribution has lack of memory property.
6. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are iid non-negative and integer valued random variables.

Prove that X_{1} is geometric when $X_{(1)}=\operatorname{Min}\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is geometric.
7. Obtain the pgf and mgf of power-series distribution.
8. Obtain the marginal distributions of X_{1} and X_{2}, when $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \mathrm{BB}\left(\mathrm{n}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{12}\right)$.
9. Prove that bivariate Poisson distribution has additive property.
10. Write the compound distribution of X , when (i) θ is discrete, (ii) θ is continuous.
SECTION - B

Answer any FIVE questions. Each carries EIGHT marks.
11. If the distribution function $\mathrm{F}(\mathrm{x})=\left\{\begin{array}{lr}0, & x<2 \\ \left(\frac{2}{3}\right) x-1, & 2 \leq x<3 \\ 1, & 3 \leq x<\infty\end{array}\right.$
then obtain the (i) decomposition of F , (ii) mgf of F .
12. For a truncated Poisson distribution, left truncated at ' 0 ', obtain the mean, variance and mgf.
13. Characterize Poisson distribution through pdf.
14. If X_{1}, X_{2} are iid Poisson random variables with parameter λ, then prove that $X_{1} \mid X_{1}+X_{2}=n$ follows $\mathrm{B}\left(\mathrm{n}, \frac{1}{2}\right.$).
15. Check whether or not the binomial, Poisson and log-series distributions are power-series distributions.
16. State and establish Skitovitch theorem regarding normal distributions.
17. If X_{1}, X_{2}, X_{3} are independent normal variables with $E\left(X_{1}\right)=1, E\left(X_{2}\right)=3, E\left(X_{3}\right)=2$ and $\mathrm{V}\left(\mathrm{X}_{1}\right)=2, \mathrm{~V}\left(\mathrm{X}_{2}\right)=2$ and $\mathrm{V}\left(\mathrm{X}_{3}\right)=3$, then check whether or not the following pairs are
independent:
(i) $X_{1}+X_{2}$ and $X_{1}-X_{2}$
(ii) $\mathrm{X}_{1}+\mathrm{X}_{2}-2 \mathrm{X}_{3}$ and $\mathrm{X}_{1}-\mathrm{X}_{2}$
(iii) $2 X_{1}+X_{3}$ and $X_{2}-X_{3}$.
18. Derive the mgf of inverse Gaussian distribution.
SECTION - C

Answer any TWO questions. Each carries TWENTY marks.
$(2 \times 20=40$ marks $)$
19(a) For a power-series distribution, obtain the first cumulant k_{1} and the recurrence formula for obtaining $\mathrm{r}^{\text {th }}$ cumulant k_{r}. Therefore find k_{r} for Poisson distribution.
(b) Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \mathrm{BB}\left(\mathrm{n}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{12}\right)$. Prove that $\mathrm{X}_{1} \mid \mathrm{X}_{2}=\mathrm{x}_{2} \stackrel{d}{\underline{d}} \mathrm{U}_{1}+\mathrm{V}_{1}$, where $\mathrm{U}_{1} \sim \mathrm{~B}\left(\mathrm{n}-\mathrm{x}_{2}, \frac{p_{1}}{q+p_{1}}\right), \mathrm{V}_{1} \sim \mathrm{~B}\left(\mathrm{x}_{2}, \frac{p_{12}}{p_{2}+p_{12}}\right)$ and U_{1} is independent of V_{1}.
20(a) Obtain the relation among mean, median, and mode of a log-normal distribution.
(b) If $X_{1} \sim G\left(\alpha, p_{1}\right), X_{2} \sim G\left(\alpha, p_{2}\right)$ and X_{1} is independent of X_{2}, then prove the following:
(i) $X_{1}+X_{2} \sim G\left(\alpha, p_{1}+p_{2}\right)$,
(ii) $\mathrm{X}_{1} /\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right) \sim$ Beta distribution of first kind,
(iii) $\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)$ is independent of $\left(\mathrm{X}_{1} /\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)\right)$.

21(a) Prove that $\left((X-\mu)^{2}\right) /\left(\mu^{2} X\right) \sim \chi^{2}(1)$, when $X \sim \operatorname{IG}(\mu, \lambda)$.
(b) Obtain the conditional distribution of (i) $X_{2} \mid X_{1}=x_{1}$, (ii) $X_{1} \mid X_{2}=x_{2}$, when $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \operatorname{BVN}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$.
22(a) Obtain the mgf of $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ at $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$, when $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \operatorname{BVN}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$.
(b) Give the definition of non-central t - distribution. Hence obtain its pdf.

